Bone Marrow Metabolism Is Impaired in Insulin Resistance and Improves After Exercise Training.

Turku PET Centre, University of Turku, Turku, Finland. Institute of Biomedicine, University of Turku, Turku, Finland. Turku PET Centre, Turku University Hospital, Turku, Finland. Department of Biostatistics, University of Turku, Turku, Finland. Department of Endocrinology, Turku University Hospital, Turku, Finland.

The Journal of clinical endocrinology and metabolism. 2020;(12):e4290-303

Abstract

CONTEXT Exercise training improves bone mineral density, but little is known about the effects of training on bone marrow (BM) metabolism. BM insulin sensitivity has been suggested to play an important role in bone health and whole-body insulin sensitivity. OBJECTIVE To study the effects of exercise training on BM metabolism. DESIGN Randomized controlled trial. SETTING Clinical research center. PARTICIPANTS Sedentary healthy (n = 28, 40-55 years, all males) and insulin resistant (IR) subjects (n = 26, 43-55 years, males/females 16/10). INTERVENTION Two weeks of sprint interval training or moderate-intensity continuous training. MAIN OUTCOME MEASURES We measured femoral, lumbar, and thoracic BM insulin-stimulated glucose uptake (GU) and fasting free fatty acid uptake (FFAU) using positron-emission tomography and bone turnover markers from plasma. RESULTS At baseline, GU was highest in lumbar, followed by thoracic, and lowest in femoral BM (all Ps < 0.0001). FFAU was higher in lumbar and thoracic than femoral BM (both Ps < 0.0001). BM FFAU and femoral BM GU were higher in healthy compared to IR men and in females compared to males (all Ps < 0.05). Training increased femoral BM GU similarly in all groups and decreased lumbar BM FFAU in males (all Ps < 0.05). Osteocalcin and PINP were lower in IR than healthy men and correlated positively with femoral BM GU and glycemic status (all Ps < 0.05). CONCLUSIONS BM metabolism differs regarding anatomical location. Short-term training improves BM GU and FFAU in healthy and IR subjects. Bone turnover rate is decreased in insulin resistance and associates positively with BM metabolism and glycemic control. CLINICAL TRIAL REGISTRATION NUMBER NCT01344928.

Methodological quality

Publication Type : Randomized Controlled Trial

Metadata